Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\lim _{x \rightarrow 2} \frac{1+\sqrt{1+4 \log _2 x}}{2+\left(2 x+\sin ^2 x+2 \cos x\right)(2 x-4)}=m$ then $\mathrm{m}(\mathrm{m}-1)=$
MathematicsLimitsAP EAMCETAP EAMCET 2023 (17 May Shift 2)
Options:
  • A 0
  • B $\log _2 \mathrm{e}$
  • C 1
  • D $\frac{1+\sqrt{3}}{2}$
Solution:
1693 Upvotes Verified Answer
The correct answer is: 1
$\because \lim _{x \rightarrow 2} \frac{1+\sqrt{1+4 \log _2 x}}{2+\left(2 x+\sin ^2 x+2 \cos x\right)(2 x-4)}=m$
$\begin{aligned} & \Rightarrow m=\frac{1+\sqrt{1+4 \log _2 2}}{2+\left(4+\sin ^2 2+2 \cos 2\right)(4-4)} \\ & \Rightarrow m=\frac{1+\sqrt{1+4}}{2+0}=\frac{1+\sqrt{5}}{2}\end{aligned}$
Now, $m(m-1)=\left(\frac{1+\sqrt{5}}{2}\right)\left(\frac{1+\sqrt{5}}{2}-1\right)=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.