Search any question & find its solution
Question:
Answered & Verified by Expert
If $\lim _{x \rightarrow 2} \frac{1+\sqrt{1+4 \log _2 x}}{2+\left(2 x+\sin ^2 x+2 \cos x\right)(2 x-4)}=m$ then $\mathrm{m}(\mathrm{m}-1)=$
Options:
Solution:
1693 Upvotes
Verified Answer
The correct answer is:
1
$\because \lim _{x \rightarrow 2} \frac{1+\sqrt{1+4 \log _2 x}}{2+\left(2 x+\sin ^2 x+2 \cos x\right)(2 x-4)}=m$
$\begin{aligned} & \Rightarrow m=\frac{1+\sqrt{1+4 \log _2 2}}{2+\left(4+\sin ^2 2+2 \cos 2\right)(4-4)} \\ & \Rightarrow m=\frac{1+\sqrt{1+4}}{2+0}=\frac{1+\sqrt{5}}{2}\end{aligned}$
Now, $m(m-1)=\left(\frac{1+\sqrt{5}}{2}\right)\left(\frac{1+\sqrt{5}}{2}-1\right)=1$
$\begin{aligned} & \Rightarrow m=\frac{1+\sqrt{1+4 \log _2 2}}{2+\left(4+\sin ^2 2+2 \cos 2\right)(4-4)} \\ & \Rightarrow m=\frac{1+\sqrt{1+4}}{2+0}=\frac{1+\sqrt{5}}{2}\end{aligned}$
Now, $m(m-1)=\left(\frac{1+\sqrt{5}}{2}\right)\left(\frac{1+\sqrt{5}}{2}-1\right)=1$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.