Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x}{x}=$ and $\lim _{x \rightarrow \infty} \frac{\cos x}{x}=m$, then which one of the
following is correct?
MathematicsLimitsNDANDA 2017 (Phase 2)
Options:
  • A $\quad l=1, \mathrm{~m}=1$
  • B $l=\frac{2}{\pi}, \mathrm{m}=\infty$
  • C $l=\frac{2}{\pi}, \mathrm{m}=0$
  • D $l=1, \mathrm{~m}=\infty$
Solution:
2556 Upvotes Verified Answer
The correct answer is: $l=\frac{2}{\pi}, \mathrm{m}=0$
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x}{x}=l$ and $\lim _{x \rightarrow \infty} \frac{\cos x}{x}=m$
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x}{x}=\frac{1}{\frac{\pi}{2}}=\frac{2}{\pi} ; \lim _{x \rightarrow \infty} \frac{\cos x}{x}=0$
$\therefore l=\frac{2}{\pi}, \mathrm{m}=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.