Search any question & find its solution
Question:
Answered & Verified by Expert
If $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+x+1}{x+1}-a x-b\right)=4$, then
Options:
Solution:
2633 Upvotes
Verified Answer
The correct answer is:
$a=1, b=-4$
Given: $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+x+1}{x+1}-a x-b\right)=4$
$\begin{array}{l}
\Rightarrow \lim _{x \rightarrow \infty} \frac{x^{2}+x+1-a x^{2}-a x-b x-b}{x+1}=4 \\
\Rightarrow \lim _{x \rightarrow \infty} \frac{(1-a) x^{2}+(1-a-b) x+(1-b)}{x+1}=4
\end{array}$
For this limit to be finite $1-a=0 \Rightarrow a=1$ then given limit reduces to
$\lim _{x \rightarrow \infty} \frac{-b x+(1-b)}{x+1}=4 \Rightarrow \lim _{x \rightarrow \infty} \frac{-b+\frac{(1-b)}{x}}{1+\frac{1}{x}}=4$
$\Rightarrow-b=4$ or $b=-4, \therefore a=1, b=-4$
$\begin{array}{l}
\Rightarrow \lim _{x \rightarrow \infty} \frac{x^{2}+x+1-a x^{2}-a x-b x-b}{x+1}=4 \\
\Rightarrow \lim _{x \rightarrow \infty} \frac{(1-a) x^{2}+(1-a-b) x+(1-b)}{x+1}=4
\end{array}$
For this limit to be finite $1-a=0 \Rightarrow a=1$ then given limit reduces to
$\lim _{x \rightarrow \infty} \frac{-b x+(1-b)}{x+1}=4 \Rightarrow \lim _{x \rightarrow \infty} \frac{-b+\frac{(1-b)}{x}}{1+\frac{1}{x}}=4$
$\Rightarrow-b=4$ or $b=-4, \therefore a=1, b=-4$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.