Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\lim _{x \rightarrow} x \sin \left(\frac{1}{x}\right)=A$ and $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=B$,

then which one of the following is correct?
MathematicsLimitsJEE Main
Options:
  • A $A=1$ and $B=0$
  • B $\quad A=0$ and $B=1$
  • C $A=0$ and $B=0$
  • D $A=1$ and $B=1$
Solution:
1571 Upvotes Verified Answer
The correct answer is: $A=1$ and $B=0$
As given,

$$

\mathrm{A}=\lim _{\mathrm{x} \rightarrow \infty} \mathrm{x} \sin \left(\frac{1}{\mathrm{x}}\right)=\lim _{\mathrm{x} \rightarrow \infty} \frac{\sin \left(\frac{1}{\mathrm{x}}\right)}{\left(\frac{1}{\mathrm{x}}\right)}

$$

Let $\mathrm{t}=\frac{1}{\mathrm{x}}$ when $\mathrm{x} \rightarrow \alpha, \mathrm{t} \rightarrow 0$

$$

\begin{aligned}

\Rightarrow \mathrm{A} &=\lim _{t \rightarrow \infty} \frac{\sin \mathrm{t}}{\mathrm{t}}=1 \\

&\left[\because \lim _{\mathrm{t} \rightarrow 0} \frac{\sin \mathrm{x}}{\mathrm{x}}=1\right]

\end{aligned}

$$

and $\mathrm{B}=\lim _{\mathrm{x} \rightarrow 0} \mathrm{x} \sin \left(\frac{1}{\mathrm{x}}\right)$

$$

\Rightarrow \mathrm{B}=\lim _{\mathrm{x} \rightarrow 0} \mathrm{x} \cdot \lim _{\mathrm{x} \rightarrow 0} \sin \left(\frac{1}{\mathrm{x}}\right)

$$

$$

\Rightarrow \mathrm{B}=0

$$

$\therefore \quad A=1$ and $B=0$ is correct

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.