Search any question & find its solution
Question:
Answered & Verified by Expert
If line $y=2 x+c$ is a normal to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$, then
Options:
Solution:
2865 Upvotes
Verified Answer
The correct answer is:
$\quad c=\frac{14}{\sqrt{73}}$
If the line $y=m x+c$ is a normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then $\mathrm{c}^{2}=\frac{\mathrm{m}^{2}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2} \mathrm{~m}^{2}}$
$\left[\right.$ Here, $\mathrm{m}=2, \mathrm{a}^{2}=9$ and $\left.\mathrm{b}^{2}=16\right]$ $=\frac{(2)^{2}(9-16)^{2}}{9+16 \times(2)^{2}}$ $=\frac{4 \times 49}{9+64}=\frac{4 \times 49}{73}=\frac{196}{73}$
$\therefore \quad c=\frac{14}{\sqrt{73}}$
$\left[\right.$ Here, $\mathrm{m}=2, \mathrm{a}^{2}=9$ and $\left.\mathrm{b}^{2}=16\right]$ $=\frac{(2)^{2}(9-16)^{2}}{9+16 \times(2)^{2}}$ $=\frac{4 \times 49}{9+64}=\frac{4 \times 49}{73}=\frac{196}{73}$
$\therefore \quad c=\frac{14}{\sqrt{73}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.