Search any question & find its solution
Question:
Answered & Verified by Expert
If $\log _{10}(x+1)+\log _{10} 5=3$, then what is the value of $x$ ?
Options:
Solution:
2662 Upvotes
Verified Answer
The correct answer is:
199
Let $\log _{10}(x+1)+\log _{10} 5=3$
$\Rightarrow \log _{10} 5(x+1)=3 \quad(\because \log m+\log n=\log m n)$
초 $5(x+1)=10$
$\Rightarrow(x+1)=\frac{1000}{5}=200$
$\Rightarrow x=200-1=199$
$\Rightarrow \log _{10} 5(x+1)=3 \quad(\because \log m+\log n=\log m n)$
초 $5(x+1)=10$
$\Rightarrow(x+1)=\frac{1000}{5}=200$
$\Rightarrow x=200-1=199$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.