Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\log _2 x+\log _4 x+\log _y x+\log _{16} x-\frac{25}{36}$ and $x=2^k$, then $k$ is
MathematicsBasic of MathematicsMHT CETMHT CET 2023 (09 May Shift 2)
Options:
  • A 1
  • B $\frac{1}{2}$
  • C $\frac{1}{3}$
  • D $\frac{1}{8}$
Solution:
1450 Upvotes Verified Answer
The correct answer is: $\frac{1}{3}$
$\begin{aligned}
& \log _2 x+\log _4 x+\log _8 x+\log _{16} x=\frac{25}{36} \\
& \frac{\log x}{\log 2}+\frac{\log x}{\log 4}+\frac{\log x}{\log 8}+\frac{\log x}{\log 16}=\frac{25}{36} \\
& \frac{\log x}{\log 2}+\frac{\log x}{2 \log 2}+\frac{\log x}{3 \log 2}+\frac{\log x}{4 \log 2}=\frac{25}{36} \\
& \frac{\log x}{\log 2}\left[1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right]=\frac{25}{36} \\
& \frac{\log x}{\log 2}\left[\frac{25}{12}\right]=\frac{25}{36} \\
& \frac{25}{12} \log _2 x=\frac{25}{36} \\
& \log _2 x=\frac{1}{3} \\
& \therefore \quad x=2^{\frac{1}{3}} \\
&
\end{aligned}$
But $x=2^{\mathrm{k}}$ ... [Given]
$\therefore \quad \mathrm{k}=\frac{1}{3}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.