Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $m$ and $\sigma^2$ are the mean and variance of the random variable $X$, whose distribution is given by


Then
MathematicsStatisticsAP EAMCETAP EAMCET 2009
Options:
  • A $m=\sigma^2=2$
  • B $m=1, \sigma^2=2$
  • C $m=\sigma^2=1$
  • D $m=2, \sigma^2=1$
Solution:
1667 Upvotes Verified Answer
The correct answer is: $m=\sigma^2=1$
Given, distribution is


$\begin{aligned}\therefore Mean, m & =\sum_{i=1}^4 p_i x_i \\ & =0 \times \frac{1}{3}+1 \times \frac{1}{2}+2 \times 0+3 \times \frac{1}{6}\end{aligned}$
$=0+\frac{1}{2}+0+\frac{1}{2}=1$
Variance, $\sigma^2=\sum_{i=1}^4 p_i\left(x_i-m\right)^2$
$\begin{aligned}
& =\frac{1}{3}(0-1)^2+\frac{1}{2}(1-1)^2 \\
& \quad+0(2-1)^2+\frac{1}{6}(3-1)^2 \\
& =\frac{1}{3}+0+0+\frac{2}{3}=1 \\
& m=\sigma^2=1
\end{aligned}$
$\therefore \quad m=\sigma^2=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.