Search any question & find its solution
Question:
Answered & Verified by Expert
If $m$ and $\sigma^2$ are the mean and variance of the random variable $X$, whose distribution is given by

Then
Options:

Then
Solution:
1667 Upvotes
Verified Answer
The correct answer is:
$m=\sigma^2=1$
Given, distribution is

$\begin{aligned}\therefore Mean, m & =\sum_{i=1}^4 p_i x_i \\ & =0 \times \frac{1}{3}+1 \times \frac{1}{2}+2 \times 0+3 \times \frac{1}{6}\end{aligned}$
$=0+\frac{1}{2}+0+\frac{1}{2}=1$
Variance, $\sigma^2=\sum_{i=1}^4 p_i\left(x_i-m\right)^2$
$\begin{aligned}
& =\frac{1}{3}(0-1)^2+\frac{1}{2}(1-1)^2 \\
& \quad+0(2-1)^2+\frac{1}{6}(3-1)^2 \\
& =\frac{1}{3}+0+0+\frac{2}{3}=1 \\
& m=\sigma^2=1
\end{aligned}$
$\therefore \quad m=\sigma^2=1$

$\begin{aligned}\therefore Mean, m & =\sum_{i=1}^4 p_i x_i \\ & =0 \times \frac{1}{3}+1 \times \frac{1}{2}+2 \times 0+3 \times \frac{1}{6}\end{aligned}$
$=0+\frac{1}{2}+0+\frac{1}{2}=1$
Variance, $\sigma^2=\sum_{i=1}^4 p_i\left(x_i-m\right)^2$
$\begin{aligned}
& =\frac{1}{3}(0-1)^2+\frac{1}{2}(1-1)^2 \\
& \quad+0(2-1)^2+\frac{1}{6}(3-1)^2 \\
& =\frac{1}{3}+0+0+\frac{2}{3}=1 \\
& m=\sigma^2=1
\end{aligned}$
$\therefore \quad m=\sigma^2=1$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.