Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\frac{\mathrm{x}}{\mathrm{ma}}+\frac{\mathrm{y}}{\mathrm{nb}}=1$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ then
MathematicsEllipseBITSATBITSAT 2020
Options:
  • A $\mathrm{m}^{2}=\frac{\mathrm{n}^{2}}{\mathrm{n}^{2}-1}$ or $\mathrm{n}^{2}=\frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}$
  • B $\mathrm{m}^{2}=\frac{\mathrm{n}^{2}}{\mathrm{n}^{2}+1}$ or $\mathrm{n}^{2}=\frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}+1}$
  • C $\mathrm{m}^{2}=\frac{\mathrm{n}^{2}+1}{\mathrm{n}^{2}}$ or $\mathrm{n}^{2}=\frac{\mathrm{m}^{2}+1}{\mathrm{~m}^{2}}$
  • D $\mathrm{m}^{2}=\frac{\mathrm{n}^{2}-1}{\mathrm{n}^{2}}$ or $\mathrm{n}^{2}=\frac{\mathrm{m}^{2}-1}{\mathrm{~m}^{2}}$
Solution:
1598 Upvotes Verified Answer
The correct answer is: $\mathrm{m}^{2}=\frac{\mathrm{n}^{2}}{\mathrm{n}^{2}-1}$ or $\mathrm{n}^{2}=\frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}$
The line is $y=-\frac{\text { nb }}{\text { ma }} x-n b$. It will touch the ellipse if $(-n b)^{2}=a^{2}\left(-\frac{n b}{m a}\right)^{2}+b^{2}$

$\left[\mathrm{c}^{2}=\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}\right]$

$\Rightarrow n^{2}=\frac{n^{2}}{m^{2}}+1$

$\Rightarrow \mathrm{m}^{2}=\frac{\mathrm{n}^{2}}{\mathrm{n}^{2}-1}$ or $\mathrm{n}^{2}=\frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.