Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \(\mathbf{a}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+4 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}\), \(\mathbf{c}=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) then, \(\left[\begin{array}{lll}\mathbf{a} \times \mathbf{b} & \mathbf{b} \times \mathbf{c} \quad \mathbf{c} \times \mathbf{a}\end{array}\right]=\)
MathematicsVector AlgebraAP EAMCETAP EAMCET 2020 (21 Sep Shift 1)
Options:
  • A 4900
  • B 6400
  • C 8100
  • D 12100
Solution:
1133 Upvotes Verified Answer
The correct answer is: 12100
Given vector
\(\begin{aligned}
& \mathbf{a}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}} \\
& \mathbf{b}=\hat{\mathbf{i}}+4 \hat{\mathbf{j}}-2 \hat{\mathbf{k}} \text { and } \mathbf{c}=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}
\end{aligned}\)
and as we know that
\(\left[\begin{array}{lll}\mathbf{a} \times \mathbf{b} & \mathbf{b} \times \mathbf{c} & \mathbf{c} \times \mathbf{a}\end{array}\right]=\left[\begin{array}{lll}\mathbf{a} & \mathbf{b} & \mathbf{c}\end{array}\right]^2\)
and \(\left[\begin{array}{lll}\mathbf{a} & \mathbf{b} & \mathbf{c}\end{array}\right]=\left|\begin{array}{ccc}2 & -3 & -4 \\ 1 & 4 & -2 \\ 3 & -1 & 4\end{array}\right|\)
\(\begin{aligned}
& =2(16-2)+3(4+6)-4(-1-12) \\
& =28+30+52=110
\end{aligned}\)
\(\therefore\left[\begin{array}{lll}\mathbf{a} \times \mathbf{b} & \mathbf{b} \times \mathbf{c} & \mathbf{c} \times \mathbf{a}\end{array}\right]=\left[\begin{array}{lll}\mathbf{a} & \mathbf{b} & \mathbf{c}\end{array}\right]^2=(110)^2=12100\)
Hence, option (d) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.