Search any question & find its solution
Question:
Answered & Verified by Expert
If \(\mathbf{P}=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and \(\mathbf{Q}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) are two sides of a triangle, then its area is equal to ____ sq units.
Options:
Solution:
1153 Upvotes
Verified Answer
The correct answer is:
\(\frac{\sqrt{390}}{2}\)
Sides of a triangle given as
\(\begin{aligned}
& \mathbf{P}=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-\hat{\mathbf{k}} \text { and } \mathbf{Q}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}} \\
& \therefore \text { Area of triangle }=\frac{1}{2}(\mathbf{P} \times \mathbf{Q}) \\
& \left.=\frac{1}{2}|| \begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
3 & 5 & -1 \\
1 & 2 & 3
\end{array} \right\rvert\, \\
& =\frac{1}{2}|\hat{\mathbf{i}}(15+2)-\hat{\mathbf{j}}(9+1)+\hat{\mathbf{k}}(6-5)| \\
& =\frac{1}{2}|17 \hat{\mathbf{i}}-10 \hat{\mathbf{j}}+\hat{\mathbf{k}}|=\frac{1}{2} \sqrt{289+100+1} \\
& =\frac{1}{2} \sqrt{390} \text { sq. units } \\
\end{aligned}\)
Hence, option (c) is correct.
\(\begin{aligned}
& \mathbf{P}=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-\hat{\mathbf{k}} \text { and } \mathbf{Q}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}} \\
& \therefore \text { Area of triangle }=\frac{1}{2}(\mathbf{P} \times \mathbf{Q}) \\
& \left.=\frac{1}{2}|| \begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
3 & 5 & -1 \\
1 & 2 & 3
\end{array} \right\rvert\, \\
& =\frac{1}{2}|\hat{\mathbf{i}}(15+2)-\hat{\mathbf{j}}(9+1)+\hat{\mathbf{k}}(6-5)| \\
& =\frac{1}{2}|17 \hat{\mathbf{i}}-10 \hat{\mathbf{j}}+\hat{\mathbf{k}}|=\frac{1}{2} \sqrt{289+100+1} \\
& =\frac{1}{2} \sqrt{390} \text { sq. units } \\
\end{aligned}\)
Hence, option (c) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.