Search any question & find its solution
Question:
Answered & Verified by Expert
If \(\mathrm{a} > 0, \mathrm{~b} > 0, \mathrm{c} > 0\) are respectively the \(\mathrm{pth}, \mathrm{q}\) th, rth terms of GP., then the value of the determinant \(\left|\begin{array}{lll}\log \mathrm{a} & \mathrm{p} & 1 \\ \log \mathrm{b} & \mathrm{q} & 1 \\ \log \mathrm{c} & \mathrm{r} & 1\end{array}\right|\) is
Options:
Solution:
2278 Upvotes
Verified Answer
The correct answer is:
0
Let \(A\) be the 1 st term and \(\mathrm{R}\) the common ratio of G.P., then
\(\begin{aligned}
& a=T_p=A R^{p-1} \\
& \therefore \log \mathrm{a}=\log \mathrm{A}+(\mathrm{p}-1) \log \mathrm{R}
\end{aligned}\)
Similarly, \(\log \mathrm{b}=\log \mathrm{A}+(\mathrm{q}-1) \log \mathrm{R}\)
and \(\log \mathrm{c}=\log \mathrm{A}+(\mathrm{r}-1) \log \mathrm{R}\)
\(\therefore \Delta=\left|\begin{array}{lll}
\log A+(p-1) \log R & p & 1 \\
\log A+(q-1) \log R & q & 1 \\
\log A+(r-1) \log R & r & 1
\end{array}\right|\)
Split into two determinants and in the first take \(\log A\) common and in the second take \(\log \mathrm{R}\) common
\(\Delta=\log A\left|\begin{array}{lll}
1 & p & 1 \\
1 & q & 1 \\
1 & r & 1
\end{array}\right|+\log R\left|\begin{array}{lll}
p-1 & p & 1 \\
q-1 & q & 1 \\
r-1 & r & 1
\end{array}\right|\)
Apply \(\mathrm{C}_1 \rightarrow \mathrm{C}_2 \rightarrow \mathrm{C}_3\) in the second
\(\Delta=0+\log R\left|\begin{array}{lll}
0 & p & 1 \\
0 & q & 1 \\
0 & r & 1
\end{array}\right|=0\)
\(\begin{aligned}
& a=T_p=A R^{p-1} \\
& \therefore \log \mathrm{a}=\log \mathrm{A}+(\mathrm{p}-1) \log \mathrm{R}
\end{aligned}\)
Similarly, \(\log \mathrm{b}=\log \mathrm{A}+(\mathrm{q}-1) \log \mathrm{R}\)
and \(\log \mathrm{c}=\log \mathrm{A}+(\mathrm{r}-1) \log \mathrm{R}\)
\(\therefore \Delta=\left|\begin{array}{lll}
\log A+(p-1) \log R & p & 1 \\
\log A+(q-1) \log R & q & 1 \\
\log A+(r-1) \log R & r & 1
\end{array}\right|\)
Split into two determinants and in the first take \(\log A\) common and in the second take \(\log \mathrm{R}\) common
\(\Delta=\log A\left|\begin{array}{lll}
1 & p & 1 \\
1 & q & 1 \\
1 & r & 1
\end{array}\right|+\log R\left|\begin{array}{lll}
p-1 & p & 1 \\
q-1 & q & 1 \\
r-1 & r & 1
\end{array}\right|\)
Apply \(\mathrm{C}_1 \rightarrow \mathrm{C}_2 \rightarrow \mathrm{C}_3\) in the second
\(\Delta=0+\log R\left|\begin{array}{lll}
0 & p & 1 \\
0 & q & 1 \\
0 & r & 1
\end{array}\right|=0\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.