Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \( \mathrm{I}_{\mathrm{n}}=\int(\ln \mathrm{x})^{\mathrm{n}} \mathrm{dx} \), then \( \mathrm{I}_{\mathrm{n}}+\mathrm{nI}_{\mathrm{n}-1}= \)
MathematicsIndefinite IntegrationJEE Main
Options:
  • A \( \frac{(\ln \mathrm{x})^{\mathrm{n}}}{\mathrm{x}}+\mathrm{C} \)
  • B \( \mathrm{x}(\ln \mathrm{x})^{\mathrm{n}-1}+\mathrm{C} \)
  • C \( \mathrm{x}(\ln \mathrm{x})^{\mathrm{n}}+\mathrm{C} \)
  • D None of these
Solution:
2062 Upvotes Verified Answer
The correct answer is: \( \mathrm{x}(\ln \mathrm{x})^{\mathrm{n}}+\mathrm{C} \)
Integrate by parts by taking ln x n dx  as   I n = ( lnx ) n .1.dx I n = x  ln  x n - x n  ln  x n - 1 x dx
     = x  ln  x n - n I n - 1
I n + n I n - 1 = x  ln  x n

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.