Search any question & find its solution
Question:
Answered & Verified by Expert
If \( \mathrm{P}=\left|\begin{array}{ll}x & 1 \\ 1 & x\end{array}\right| \) and \( \mathrm{Q}=\left|\begin{array}{lll}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{array}\right| \),then \( \frac{d Q}{d x}= \)
Options:
Solution:
1255 Upvotes
Verified Answer
The correct answer is:
\( 3 \mathrm{P} \)
Given that
\( P=\left|\begin{array}{ll}x & 1 \\ 1 & x\end{array}\right|, Q=\left|\begin{array}{lll}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{array}\right| \)
So, \( P=x^{2}-1 \)
And \( Q=x\left(x^{2}-1\right)-(x-1)+(1-x) \)
\( =x^{3}-3 x+2 \)
Now, \( \frac{d Q}{d x}=3 x^{2}-3 \)
\( =3\left(x^{2}-1\right)=3 P \)
\( P=\left|\begin{array}{ll}x & 1 \\ 1 & x\end{array}\right|, Q=\left|\begin{array}{lll}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{array}\right| \)
So, \( P=x^{2}-1 \)
And \( Q=x\left(x^{2}-1\right)-(x-1)+(1-x) \)
\( =x^{3}-3 x+2 \)
Now, \( \frac{d Q}{d x}=3 x^{2}-3 \)
\( =3\left(x^{2}-1\right)=3 P \)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.