Search any question & find its solution
Question:
Answered & Verified by Expert
If matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$ and $A^{-1}=\alpha I+\beta A$ where $I$ is a unit matrix of order 2 and $\alpha, \beta$ are constants, then the value of $\alpha+\beta+\alpha \beta$ is
Options:
Solution:
2649 Upvotes
Verified Answer
The correct answer is:
$-11$
$\begin{aligned} & A^{-1}=\alpha I+\beta A \\ & \Rightarrow\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]^{-1}=\alpha\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\beta\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right] \\ & \Rightarrow\left[\begin{array}{cc}-5 & 2 \\ 3 & -1\end{array}\right]=\left[\begin{array}{cc}\alpha+\beta & 2 \beta \\ 3 \beta & \alpha+5 \beta\end{array}\right] \\ & \Rightarrow \alpha=-6, \beta=1\end{aligned}$
Now $\alpha+\beta+\alpha \beta=-6+1+(-6) \times 1=-11$
Now $\alpha+\beta+\alpha \beta=-6+1+(-6) \times 1=-11$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.