Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{n}=(2020)$ ! then
$$
\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\frac{1}{\log _{4} n}+\ldots+\frac{1}{\log _{2020} n}
$$
is equal to
MathematicsSequences and SeriesKCETKCET 2009
Options:
  • A 2020
  • B 1
  • C (2020)!
  • D 0
Solution:
2744 Upvotes Verified Answer
The correct answer is: 1
$\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\frac{1}{\log _{4} n}+\ldots+\frac{1}{\log _{2020} n}$
$=\log _{n} 2+\log _{n} 3+\log _{n} 4+\ldots+\log _{n} 2020$
$=\log _{n}(2 \times 3 \times 4 \times \ldots \times 2020)$
$=\log _{(2020) !}(2020) ! \quad(\because n=2020 !$ given $)$
$=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.