Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $n(\mathrm{~A})=1000, n(\mathrm{~B})=500$ and if $n(\mathrm{~A} \cap \mathrm{B}) \geq 1$ and $n(\mathrm{~A} \cup \mathrm{B})=p$, then
MathematicsSets and RelationsJEE Main
Options:
  • A $500 \leq p \leq 1000$
  • B $1001 \leq p \leq 1498$
  • C $1000 \leq p \leq 1498$
  • D $1000 \leq p \leq 1499$
Solution:
1972 Upvotes Verified Answer
The correct answer is: $1000 \leq p \leq 1499$
$\mathrm{n}(\mathrm{A})=1000, \mathrm{n}(\mathrm{B})=500, \mathrm{n}(\mathrm{A} \cap \mathrm{B}) \geq 1$, $n(A \cup B)=p ; n(A \cup B)=n(A)+n(B)-n(A \cap B)$ $\mathrm{p}=1000+500-\mathrm{n}(\mathrm{A} \cap \mathrm{B}) \Rightarrow 1 \leq \mathrm{n}(\mathrm{A} \cap \mathrm{B}) \leq 500$
Hence $p \leq 1499$ and $p \geq 1000 \Rightarrow 1000 \leq p \leq 1499$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.