Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If ${ }^{n} C_{r-1}=36,{ }^{n} C_{r}=84$ and ${ }^{n} C_{r+1}=126$ then the value of ${ }^{n} C_{8}$ is
MathematicsBinomial TheoremWBJEEWBJEE 2016
Options:
  • A 10
  • B 7
  • C 9
  • D 8
Solution:
2318 Upvotes Verified Answer
The correct answer is: 9
Given,
$$
\begin{aligned}
{ }^{n} C_{r-1} &=36 \\
{ }^{n} C_{r} &=84 \\
{ }^{n} C_{r+1} &=126
\end{aligned}
$$
On dividing
$$
\frac{r}{n-r+1}=\frac{36}{84}
$$
$\Rightarrow \quad 84 r=36 n-36 r+36$
$\Rightarrow \quad 120 r=36 n+36$
Also,
$$
\begin{array}{r}
\frac{r+1}{n-r}=\frac{64}{126} \\
\Rightarrow \quad 126 r+126=84 n-84 r
\end{array}
$$
$\Rightarrow$
$$
210r=84 n-126
$$
On solving Eqs. (iv) and (v). we get $n=9$ and $r=3$
\begin{array}{l}
\hline
\end{array}
$$
{ }^{n} C_{8}={ }^{9} C_{8}=9
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.