Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{n}$ is an integer which leaves remainder one when divided by three, then $(1+\sqrt{3} i)^{n}+(1-\sqrt{3} i)^{n}$ equals
MathematicsComplex NumberVITEEEVITEEE 2009
Options:
  • A $-2^{\mathrm{n}+1}$
  • B $2^{n+1}$
  • C $-(-2)^{\mathrm{n}}$
  • D $-2^{n}$
Solution:
2709 Upvotes Verified Answer
The correct answer is: $-(-2)^{\mathrm{n}}$
$$
\begin{aligned}
&(1+\sqrt{3} i)^{n}+(1-\sqrt{3} i)^{n} \\
=&\left[2\left(\frac{1+\sqrt{3} i}{2}\right)\right]^{n}+\left[2\left(\frac{1-\sqrt{3} i}{2}\right)\right]^{n} \\
=&\left(-2 \omega^{2}\right)^{n}+(-2 \omega)^{n} \\
=&(-2)^{n}\left[\left(\omega^{2}\right)^{3 r+1}+(\omega)^{3 r+1}\right] \\
&(\because n=3 r+1, \text { where } r \text { is an integer }) \\
=&(-2)^{n}\left(\omega^{2}+\omega\right)=-(-2)^{n}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.