Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If non-zero real numbers b and c are such that  min fx>max gx, where fx=x2+2bx+2c2 and gx=-x2-2cx+b2, xR; then cb lies in the interval 
MathematicsApplication of DerivativesJEE MainJEE Main 2014 (19 Apr Online)
Options:
  • A 2
  • B [ 1 2 1 2 )
  • C 0 1 2
  • D 1 2 2
Solution:
1151 Upvotes Verified Answer
The correct answer is: 2

Given fx=x2+2bx+2c2 and gx=-x2-2cx+b2

For finding the minimum value of f(x),

f'x=2x+2b=0

x=-b

Also, f"x=2

f"-b=2>0

So, fx has minimum value at x=-b

Hence, fmin=b2-2b2+2c2

      fmin=2c2-b2

Similarly, for finding the maximum value of g(x)

g'x=-2x-2c=0

                        x=-c

Also, g"x=-2

g"-c=-2<0

So, gx has maximum value at x=-c.

Hence, gmax=-c2+2c2+b2

      gmax=c2+b2

Given fmin>gmax2c2-b2>c2+b2c2-2b2>0 c-2bc+2b>0

cb-2cb+2>0

Using wavy curve method, we get cb<-2 or cb>2 

cb2, .

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.