Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{OA}=6 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}, \mathrm{OB}=2 \hat{\mathbf{j}}+\hat{\mathrm{k}}$, OC $=5 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ are the coterminous edges of a parallelopiped, then the height of the parallelopiped drawn from the vertex $A$ is
MathematicsVector AlgebraTS EAMCETTS EAMCET 2019 (04 May Shift 1)
Options:
  • A $\frac{85}{3}$
  • B $\frac{5}{\sqrt{32}}$
  • C $\frac{85}{\sqrt{257}}$
  • D $\frac{17}{\sqrt{6}}$
Solution:
1985 Upvotes Verified Answer
The correct answer is: $\frac{17}{\sqrt{6}}$
We have,
$\begin{aligned}
\mathbf{O A} & =6 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}} \\
\mathbf{O B} & =2 \hat{\mathbf{j}}+\hat{\mathbf{k}} \\
\mathbf{O C} & =5 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}} \\
\mathbf{O A} \cdot(\mathbf{O B} \times \mathbf{O C}) & =\left|\begin{array}{ccc}
6 & 3 & -4 \\
0 & 2 & 1 \\
5 & -1 & 2
\end{array}\right| \\
& =6(4+1)-3(-5)-4(-10) \\
\mathbf{O A} \cdot(\mathbf{O B} \times \mathbf{O C}) & =30+15+40=85 \\
\mathbf{O B} \times \mathbf{O C} & =\left|\begin{array}{lll}
1 & 5 & k \\
0 & 2 & 1 \\
5 & -1 & 2
\end{array}\right|=5 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-10 \hat{\mathbf{k}} \\
|\mathbf{O B} \times \mathbf{O C}| & =\sqrt{25+25+100}=5 \sqrt{6}
\end{aligned}$
Height of parallelopiped drawn from $A$
$=\frac{\mathrm{OA} \cdot(\mathrm{OB} \times \mathrm{OC})}{|\mathrm{OB} \times \mathrm{OC}|}=\frac{85}{5 \sqrt{6}}=\frac{17}{\sqrt{6}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.