Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\overrightarrow{\mathrm{p}} \neq \overrightarrow{0}$ and the conditions $\overrightarrow{\mathrm{p}} \overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{r}}$ hold
simultaneously, then which one of the following is correct?
MathematicsVector AlgebraNDANDA 2006 (Phase 1)
Options:
  • A $\overrightarrow{\mathrm{q}} \neq \overrightarrow{\mathrm{r}}$
  • B $\overrightarrow{\mathrm{q}}=\overrightarrow{-\mathrm{r}}$
  • C $\overrightarrow{\text { q. } \cdot \mathrm{r}}=0 \quad$
  • D $\overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{r}}$
Solution:
1503 Upvotes Verified Answer
The correct answer is: $\overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{r}}$
Given that $\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{r}}$
$\Rightarrow \overrightarrow{\mathrm{p}} \cdot(\overrightarrow{\mathrm{q}}-\overrightarrow{\mathrm{r}})=0$
$\Rightarrow \overrightarrow{\mathrm{p}}$ is perpendicular to $\overrightarrow{\mathrm{q}}-\overrightarrow{\mathrm{r}}$
Also, $\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{r}}$ (given).
$\Rightarrow \overrightarrow{\mathrm{p}} \times(\overrightarrow{\mathrm{q}}-\overrightarrow{\mathrm{r}})=0$
$\Rightarrow \overrightarrow{\mathrm{p}}$ is parallel to $\overrightarrow{\mathrm{q}}-\overrightarrow{\mathrm{r}}$
Which is not possible simultaneously unless either $\mathrm{p}$ or $\overrightarrow{\mathrm{q}}-\overrightarrow{\mathrm{r}}$ is zero, since $\overrightarrow{\mathrm{p}} \neq 0, \Rightarrow \overrightarrow{\mathrm{q}}-\overrightarrow{\mathrm{r}}=0$
Thus, the given conditions hold simultaneously if $\overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{r}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.