Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $P_{1}$ and $P_{2}$ be the length of perpendiculars from the origin upon the straight lines $x \sec \theta+y \operatorname{cosec} \theta$ $=a$ and $x \cos \theta-y \sin \theta=a \cos 2 \theta$ respectively,

then the value of $4 \mathrm{P}_{1}^{2}+\mathrm{P}_{2}^{2}$
MathematicsStraight LinesBITSATBITSAT 2014
Options:
  • A $a^{2}$
  • B $2 a^{2}$
  • C $a^{2} / 2$
  • D $3 a^{2}$
Solution:
2518 Upvotes Verified Answer
The correct answer is: $a^{2}$
We have $P_{1}=$ length of perpendicular from (0,0) on $x \sec \theta+y \operatorname{cosec} \theta=a$

$\begin{aligned} \text { i.e. } P_{1} &=\left|\frac{a}{\sqrt{\sec ^{2} \theta+\cos e c^{2} \theta}}\right|=|a \sin \theta \cos \theta| \\ &=\left|\frac{a}{2} \sin 2 \theta\right| \text { or } 2 P_{1}=|a \sin 2 \theta| \end{aligned}$

$\mathrm{P}_{2}=$ Length of the perpendicular from (0,0) on $x \cos \theta-y \sin \theta=a \cos 2 \theta$

$P_{2}=\left|\frac{a \cos 2 \theta}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}\right|=|a \cos 2 \theta|$

Now, $4 P_{1}^{2}+P_{2}^{2}=a^{2} \sin ^{2} 2 \theta+a^{2} \cos ^{2} 2 \theta=a^{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.