Search any question & find its solution
Question:
Answered & Verified by Expert
If $P=\left(\begin{array}{rrr}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right),$ then $P^{5}$ is equal to
Options:
Solution:
2508 Upvotes
Verified Answer
The correct answer is:
$P$
Given, $P=\left(\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right)$
$\begin{aligned} P^{2} &=P \cdot P=\left(\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right)\left(\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right) \\ &=\left(\begin{array}{ccc}4+2-4 & -4-6+8 & -8 & -8+12 \\ -2-3+4 & 2+9-8 & 4+12-12 \\ 2+2-3 & -2-6+6 & -4-8+9\end{array}\right) \\ &=\left(\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right)=P \\ \therefore P^{4}=P^{2}=P \\ \Rightarrow P^{5}=P^{2}=P \end{aligned}$
$\begin{aligned} P^{2} &=P \cdot P=\left(\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right)\left(\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right) \\ &=\left(\begin{array}{ccc}4+2-4 & -4-6+8 & -8 & -8+12 \\ -2-3+4 & 2+9-8 & 4+12-12 \\ 2+2-3 & -2-6+6 & -4-8+9\end{array}\right) \\ &=\left(\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right)=P \\ \therefore P^{4}=P^{2}=P \\ \Rightarrow P^{5}=P^{2}=P \end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.