Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{P}(2,3)$ and $\mathrm{Q}(-1,2)$ are conjugate points with respect to the circle $x^2+y^2+2 g x+3 y-2=0$, then the radius of the circle is
MathematicsCircleAP EAMCETAP EAMCET 2023 (19 May Shift 1)
Options:
  • A $\frac{19}{6}$
  • B $\frac{3 \sqrt{21}}{\sqrt{2}}$
  • C $\frac{3 \sqrt{3}}{\sqrt{2}}$
  • D $\frac{35}{2}$
Solution:
2187 Upvotes Verified Answer
The correct answer is: $\frac{3 \sqrt{21}}{\sqrt{2}}$
Since $P(2,3)$ and $Q(-1,2)$ are conjugate point w.r.t. the circle $x^2+y^2+2 g x+3 y-2=0$
Hence both the points lie on the polar of the other point
Let $P\left(x_1, y_1\right)=P(2,3)$
$$
Q\left(x_2, y_2\right)=Q(-1,2)
$$

Hence
$$
\begin{aligned}
& \Rightarrow\left(x_1 x_2\right)+\left(y_1 y_2\right)+2 g\left(\frac{x_1+x_2}{2}\right)+3\left(\frac{y_1+y_2}{2}\right)-2=0 \\
& \Rightarrow g=-\frac{19}{2}
\end{aligned}
$$
Since radius $r=\sqrt{g^2+f^2-c}$
$$
r=\sqrt{\left(-\frac{19}{2}\right)^2+\left(-\frac{3}{2}\right)^2-(-2)}=\frac{3 \sqrt{21}}{\sqrt{2}}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.