Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $P\left(A^{\prime}\right)=0 \cdot 6, P(B)=0 \cdot 8$ and $P(B / A)=0 \cdot 3$, then $P(A / B)=$
MathematicsProbabilityMHT CETMHT CET 2020 (13 Oct Shift 1)
Options:
  • A $\frac{7}{20}$
  • B $\frac{3}{20}$
  • C $\frac{3}{4}$
  • D $\frac{9}{20}$
Solution:
2276 Upvotes Verified Answer
The correct answer is: $\frac{3}{20}$
Given $P\left(A^{\prime}\right)=0.6 \Rightarrow P(A)=1-0.6=0.4, P(B)=0.8, P(B / A)=0.3$
We know that $\mathrm{P}(\mathrm{B} / \mathrm{A})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}$ and $\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}$
Here $P(A \cap B)=P(A) \cdot P(B / A)=(0.4)(0.3)=0.12$
Also $\quad P(A \cap B)=P(A / B) \cdot P(B)$
$\therefore \mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{0.12}{0.8}=\frac{12}{80}=\frac{3}{20}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.