Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{P}(\mathrm{A})=\frac{1}{12}, \mathrm{P}(\mathrm{B})=\frac{5}{12}$ and $\mathrm{P}(\mathrm{B} / \mathrm{A})=\frac{1}{15}$ then $\mathrm{p}(\mathrm{A} \cup \mathrm{B})$ is equal to
MathematicsApplication of DerivativesVITEEEVITEEE 2007
Options:
  • A $\frac{89}{180}$
  • B $\frac{90}{180}$
  • C $\frac{91}{180}$
  • D $\frac{92}{180}$
Solution:
1030 Upvotes Verified Answer
The correct answer is: $\frac{89}{180}$
Given
$\mathrm{P}(\mathrm{A})=\frac{1}{12}, \mathrm{P}(\mathrm{B})=\frac{5}{12}, \mathrm{P}(\mathrm{B} / \mathrm{A})=\frac{1}{15}$
We know that $P(B / A)=\frac{P(A \cap B)}{P(A)}$
$\begin{array}{l}
\Rightarrow \frac{1}{15}=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{1 / 12} \\
\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{15 \times 12}=\frac{1}{180}
\end{array}$
But,
$\begin{array}{l}
\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \\
\Rightarrow \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{1}{12}+\frac{5}{12}-\frac{1}{180}=\frac{89}{180}
\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.