Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathbf{p}=\hat{i}+\hat{j}, \mathbf{q}=4 \hat{k}-\hat{j}$ and $\mathbf{r}=\hat{i}+\hat{k}$, then the unit vector in the direction of $3 \mathbf{p}+\mathbf{q}-2 \mathbf{r}$ is
MathematicsVector AlgebraCOMEDKCOMEDK 2022
Options:
  • A $\frac{1}{3}(\hat{i}+2 \hat{j}+2 \hat{k})$
  • B $\frac{1}{3}(\hat{i}-2 \hat{j}-2 \hat{k})$
  • C $\frac{1}{3}(\hat{i}-2 \hat{j}+2 \hat{k})$
  • D $\hat{i}+2 \hat{j}+2 \hat{k}$
Solution:
2046 Upvotes Verified Answer
The correct answer is: $\frac{1}{3}(\hat{i}+2 \hat{j}+2 \hat{k})$
$3 p+q-2 \mathbf{r}$
$$
\begin{aligned}
& =3(\hat{i}+\hat{j})+(4 \hat{k}-\hat{j})-2(\hat{i}+\hat{k}) \\
& =\hat{i}+2 \hat{j}+2 \hat{k}
\end{aligned}
$$
$\therefore$ Unit vector in the direction of
$$
3 \mathbf{p}+\mathbf{q}-2 \mathbf{r}=\frac{1}{3}(\hat{i}+2 \hat{j}+2 \hat{k})
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.