Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \(P\) is a point lying on the line passing through the point \(A(\hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}})\) and parallel to the vector \(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}\) such that \(|\mathbf{A P}|=18\), then a position vector of \(P\) is
MathematicsVector AlgebraAP EAMCETAP EAMCET 2019 (22 Apr Shift 1)
Options:
  • A \(-13 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+9 \hat{\mathbf{k}}\)
  • B \(11 \hat{\mathbf{i}}+7 \mathbf{j}-15 \hat{\mathbf{k}}\)
  • C \(13 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+9 \hat{\mathbf{k}}\)
  • D \(13 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-9 \hat{\mathbf{k}}\)
Solution:
1220 Upvotes Verified Answer
The correct answer is: \(13 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-9 \hat{\mathbf{k}}\)
According to the given information, the diagram is shown as below.


Given,
\(\begin{aligned}
\mathbf{A P} & =18 \\
\mathbf{O A} & =\hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}
\end{aligned}\)
Now, \(\mathbf{A P}=18 \times \frac{2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}}{\sqrt{(2)^2+(l)^2+(-2)^2}}\)
\(\begin{aligned}
& =18 \times \frac{2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}}{\sqrt{4+1+4}} \\
& =18 \times \frac{2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}}{3} \\
& =6(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})=12 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-12 \hat{\mathbf{k}}
\end{aligned}\)
By triangle law,
\(\begin{aligned}
\mathbf{O P} & =\mathbf{O A}+\mathbf{A P} \\
& =\hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}+12 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-12 \hat{\mathbf{k}} \\
& =13 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-9 \hat{\mathbf{k}}
\end{aligned}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.