Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If P is a point on the line parallel to the vector 2i^-3j^-6k^ and passing through the point A whose position vector is i^+2j^-2k^ and AP=21, then the position vector of P can be
MathematicsThree Dimensional GeometryTS EAMCETTS EAMCET 2022 (18 Jul Shift 1)
Options:
  • A 6i^-9j^-18k^
  • B 6k^+9j^-1k^
  • C 7i^+11j^+16k^
  • D 5i^-11j^+16k^
Solution:
1890 Upvotes Verified Answer
The correct answer is: 7i^+11j^+16k^

Given line passing through A having position vector a=i^+2j^-2k^

And line parallel to b=2i^-3j^-6k^

Therefore, equation of line is 

r=i^+2j^-2k^+λ2i^-3j^-6k^

r=1-2λi^+2-3λj^+-2-6λk^

Let, the position vector of P is 1-2λi^+2-3λj^+-2-6λk^.

AP=21

-2λi^-3λj^-6λk^=21

4λ2+9λ2+36λ2=21

7λ=21

 λ=±3

When λ=3, then

P-5i^-7j^-20k^

When λ=-3, then

P7i^+11j^+16k^

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.