Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $P(\theta)$ lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $S$ and $S^{\prime}$ are foci of the hyperbola,
then $S P . S^{\prime} P=$
MathematicsHyperbolaMHT CETMHT CET 2020 (14 Oct Shift 2)
Options:
  • A $a^{2} \tan ^{2} \theta-b^{2} \sec ^{2} \theta$
  • B $a^{2} \tan ^{2} \theta+b^{2} \sec ^{2} \theta$
  • C $a^{2} \sec ^{2} \theta+b^{2} \tan ^{2} \theta$
  • D $a^{2} \sec ^{2} \theta-b^{2} \tan ^{2} \theta$
Solution:
1131 Upvotes Verified Answer
The correct answer is: $a^{2} \tan ^{2} \theta+b^{2} \sec ^{2} \theta$


$S P \cdot S P^{\prime}=$ By Distance formula we get;
$=a^{2} \tan ^{2} \theta+b^{2} \sec ^{2} \theta$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.