Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathbf{p} \times \mathbf{q}=\mathbf{p} \times \mathbf{r}$ and $\mathbf{p} \cdot \mathbf{q}=\mathbf{p} \cdot \mathbf{r}$, then $\ldots . . .$.
MathematicsVector AlgebraAP EAMCETAP EAMCET 2020 (22 Sep Shift 2)
Options:
  • A $p=r$
  • B $q=r$
  • C $p=q$
  • D $p+q=0$
Solution:
2912 Upvotes Verified Answer
The correct answer is: $q=r$
$\mathbf{p} \times \mathbf{q}=\mathbf{p} \times \mathbf{r}$
$$
\begin{aligned}
& \Rightarrow \quad \mathbf{p} \times(\mathbf{q}-\mathbf{r})=0 \\
& \text { p.q }=\text { p. } r \\
& \Rightarrow \quad \text { p. }(\mathbf{q}-\mathbf{r})=0 \\
&
\end{aligned}
$$

From Eqs. (i) and (ii) we can say that $\mathbf{p}$ is neither parallel nor Perpendicular to $(\mathbf{q}-\mathbf{r})$
$$
\begin{aligned}
& \Rightarrow \quad \mathbf{q}-\mathbf{r}=0 \\
& {[\because \mathbf{p} \neq 0]} \\
& \Rightarrow \quad \mathbf{q}=\mathbf{r} \\
&
\end{aligned}
$$
Hence, option (2) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.