Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $P Q$ is a double ordinate of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 .$ Such that $O P Q$ is an equilateral triangle, $O$ being the centre of the hyperbola, then the eccentricity ' $e$ ' of the hyperbola satisfies
MathematicsHyperbolaVITEEEVITEEE 2013
Options:
  • A $1 < e < \frac{2}{\sqrt{3}}$
  • B $e=\frac{2}{\sqrt{3}}$
  • C $e=\frac{\sqrt{3}}{2}$
  • D $e>\frac{2}{\sqrt{3}}$
Solution:
2235 Upvotes Verified Answer
The correct answer is: $e>\frac{2}{\sqrt{3}}$
Let $\mathrm{P}(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta), \mathrm{Q}(\mathrm{a} \sec \theta,-\mathrm{b} \tan \theta)$ be end points of double ordinates and $(0,0)$ is the centre of the hyperbola. So, $\mathrm{PQ}=2 \mathrm{~b} \tan \theta$


$\mathrm{OQ}=\mathrm{OP}=\sqrt{\mathrm{a}^{2} \sec ^{2} \theta+\mathrm{b}^{2} \tan ^{2} \theta}$
Since, $\mathrm{OQ}=\mathrm{OP}=\mathrm{PQ}$
$\therefore 4 b^{2} \tan ^{2} \theta=a^{2} \sec ^{2} \theta+b^{2} \tan ^{2} \theta$
$\Rightarrow 3 b^{2} \tan ^{2} \theta=a^{2} \sec ^{2} \theta$
$\Rightarrow 3 b^{2} \sin ^{2} \theta=a^{2}$
$\Rightarrow 3 a^{2}\left(e^{2}-1\right) \sin ^{2} \theta=a^{2}$
$\Rightarrow 3\left(e^{2}-1\right) \sin ^{2} \theta=1$
$\Rightarrow \frac{1}{3\left(e^{2}-1\right)}=\sin ^{2} \theta < 1,\left(\because \sin ^{2} \theta < 1\right)$
$\Rightarrow \frac{1}{e^{2}-1} < 3 \Rightarrow e^{2}-1>\frac{1}{3} \Rightarrow e^{2}>\frac{4}{3}$
$\therefore e>\frac{2}{\sqrt{3}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.