Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=\mathrm{p}(\mathrm{x}-\alpha)(\mathrm{x}-\beta)$, and $\mathrm{p}^{3}+\mathrm{pq}+\mathrm{r}=0 ; \mathrm{p}, \mathrm{q}$ and r being real numbers, then which of the following is not possible?
MathematicsQuadratic EquationNDANDA 2006 (Phase 2)
Options:
  • A $\alpha=\beta=\mathrm{p}$
  • B $\alpha \neq \beta=\mathrm{p}$
  • C $\alpha=\beta \neq \mathrm{p}$
  • D $\beta \neq \alpha=\mathrm{p}$
Solution:
1747 Upvotes Verified Answer
The correct answer is: $\alpha=\beta=\mathrm{p}$
Given equation is $\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=\mathrm{p}(\mathrm{x}-\alpha)(\mathrm{x}-\beta)$
$\Rightarrow p x^{2}+q x+r=p x^{2}-p(\alpha+\beta) x+\alpha \beta p$
$\Rightarrow \alpha \beta \mathrm{p}=\mathrm{r}$ and $\mathrm{q}=-(\alpha+\beta) \mathrm{p}$...(1)
Also given that $\mathrm{p}^{3}+\mathrm{pq}+\mathrm{r}=0$
Putting value of $q$ and $r$ from $(1)$ $\Rightarrow p^{3}-p^{2}(\alpha+\beta)+\alpha \beta p=0$
$\Rightarrow \mathrm{p}^{2}-\mathrm{p}(\alpha+\beta)+\alpha \beta=0$
$\Rightarrow(p-\alpha)(p-\beta)=0 \Rightarrow \alpha=\beta=p$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.