Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $R$ and $r$ are the radii of the circumcircle and incircle of a regular polygon of $n$ sides, each side being of length a, then $2(R+r)$ equals
MathematicsProperties of TrianglesJEE Main
Options:
  • A $\frac{a}{4} \cot \frac{\pi}{2 n}$
  • B a $\cot \frac{\pi}{n}$
  • C $\frac{a}{2} \cot \frac{\pi}{2 n}$
  • D $\operatorname{a~} \cot \frac{\pi}{2 n}$
Solution:
2639 Upvotes Verified Answer
The correct answer is: $\operatorname{a~} \cot \frac{\pi}{2 n}$
We know that $R=\frac{1}{2}$ a $\operatorname{cosec}\left(\frac{\pi}{n}\right)$ and $r=\frac{1}{2}$ a $\cot \left(\frac{\pi}{n}\right)$. so that
$2(R+r)=a\left(\frac{1}{\sin \left(\frac{\pi}{n}\right)}+\frac{\cos \left(\frac{\pi}{n}\right)}{\sin \left(\frac{\pi}{n}\right)}\right)=a \frac{1+\cos \left(\frac{\pi}{n}\right)}{\sin \left(\frac{\pi}{n}\right)}$
$=a \frac{2 \cos ^2\left(\frac{\pi}{2 n}\right)}{2 \sin \left(\frac{\pi}{2 n}\right) \cos \left(\frac{\pi}{2 n}\right)}=a \cot \frac{\pi}{2 n}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.