Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If resistivity of $0.8 \mathrm{M} \mathrm{KCl}$ solution is $2 \cdot 5 \times 10^{-3} \Omega \mathrm{cm} .$ Calculate molar conductivity of solution?
ChemistryElectrochemistryMHT CETMHT CET 2020 (16 Oct Shift 2)
Options:
  • A $3 \times 10^{5} \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
  • B $2 \times 10^{5} \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
  • C $4 \times 10^{5} \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
  • D $5 \times 10^{5} \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
Solution:
1657 Upvotes Verified Answer
The correct answer is: $5 \times 10^{5} \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(A)
$\begin{array}{l}
\text { Conductivity }(\mathrm{k})=\frac{1}{\text { resistivity }}=\frac{1}{2.5 \times 10^{-3} \Omega \mathrm{cm}}=0.4 \times 10^{3} \Omega^{-1} \mathrm{~cm}^{-1} \\
\text { Molar conductivity } \quad\left(\Lambda_{\mathrm{m}}\right)=\frac{1000 \mathrm{k}}{\mathrm{C}}=\frac{1000 \mathrm{~cm}^{3} \mathrm{~L}^{-1} \times 0.4 \times 10^{3} \Omega^{-1} \mathrm{~cm}^{-1}}{0.8 \mathrm{~mol} \mathrm{~L}^{-1}}
\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.