Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $S_n=1^3+2^3+\ldots+n^3$ and $T_n=1+2+\ldots+n$, then
MathematicsSequences and SeriesAP EAMCETAP EAMCET 2007
Options:
  • A $S_n=T_{n^3}$
  • B $S_n=T_{n^2}$
  • C $S_n=T_n^2$
  • D $S_n=T_n^3$
Solution:
2877 Upvotes Verified Answer
The correct answer is: $S_n=T_n^2$
Given, $S_n=1^3+2^3+\ldots+n^3=\Sigma n^3$
$\begin{array}{rlrl} & \text { and } & T_n & =1+2+\ldots+n=\Sigma n \\ & & S_n & =\Sigma n^3=\left[\frac{n(n+1)}{2}\right]^2 \\ & & =\{\Sigma(n)\}^2=T_n^2 \\ & \therefore & S_n & =T_n^2\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.