Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If sec $(\theta-\alpha)$, sec $\theta$ and sec $(\theta+\alpha)$ are in AP, where cos $\alpha \neq 1$, then what is the value of $\sin ^{2} \theta+\cos \alpha$ ? $[2018-\mathrm{II}]$
MathematicsTrigonometric Ratios & IdentitiesNDANDA 2018 (Phase 2)
Options:
  • A 0
  • B 1
  • C $-1$
  • D $1 / 2$
Solution:
1280 Upvotes Verified Answer
The correct answer is: 0
$\frac{2}{\cos \theta}=\frac{\cos (\theta+\alpha)+\cos (\theta-\alpha)}{\cos (\theta+\alpha) \cos (\theta-\alpha)}=\frac{2 \cos \theta \cdot \cos \alpha}{\cos ^{2} \theta-\sin ^{2} \alpha}$
$\Rightarrow \cos ^{2} \theta \cos \alpha=\cos ^{2} \theta-\sin ^{2} \alpha$
$\Rightarrow \sin ^{2} \alpha=\cos ^{2} \theta(1-\cos \alpha)$
$\Rightarrow \cos ^{2} \theta=\frac{\sin ^{2} \alpha}{1-\cos \alpha}=1+\cos \alpha$
$\Rightarrow \quad 1-\sin ^{2} \theta=1+\cos \alpha$
$\Rightarrow \sin ^{2} \theta+\cos \alpha=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.