Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\sec x=\frac{25}{24}$ and $x$ lies in first quadrant, then $\sin \frac{x}{2}+\cos \frac{x}{2}=$
MathematicsTrigonometric EquationsMHT CETMHT CET 2021 (20 Sep Shift 2)
Options:
  • A $\frac{6}{5 \sqrt{2}}$
  • B $\frac{8}{5 \sqrt{2}}$
  • C $\frac{7}{5 \sqrt{2}}$
  • D $\frac{1}{5 \sqrt{2}}$
Solution:
1555 Upvotes Verified Answer
The correct answer is: $\frac{8}{5 \sqrt{2}}$
We have $\cos x=\frac{24}{25} \Rightarrow \sin x=\frac{7}{25} \ldots\left[\because x\right.$ lies in $1^{\text {st }}$ quadrant $]$ Also $\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^2=1+\sin x=1+\frac{7}{25}=\frac{32}{25}$
$$
\therefore \sin \frac{x}{2}+\cos \frac{x}{2}=\sqrt{\frac{32}{25}}=\frac{4 \sqrt{2}}{5}=\frac{8}{5 \sqrt{2}}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.