Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\operatorname{sech}^{-1}\left(\frac{1}{2}\right)-\operatorname{cosec~h}^{-1}\left(\frac{3}{4}\right)=\log _e k$, then
MathematicsInverse Trigonometric FunctionsTS EAMCETTS EAMCET 2020 (11 Sep Shift 1)
Options:
  • A $3 k^2-12 k-1=0$
  • B $3 k^2-12 k+1=0$
  • C $9 k^2-12 k+1=0$
  • D $9 k^2-12 k-1=0$
Solution:
1155 Upvotes Verified Answer
The correct answer is: $9 k^2-12 k+1=0$
Given, $\operatorname{sech}^{-1}\left(\frac{1}{2}\right)-\operatorname{cosech}^{-1}\left(\frac{3}{4}\right)=\log _e k$
$\Rightarrow \log _e\left(\sqrt{2^2-1}+2\right)-\log _e\left(\sqrt{\left(\frac{4}{3}\right)^2}+1+\frac{4}{3}\right)=\log _e k$
$\Rightarrow \log _e(\sqrt{3}+2)-\log \left(\frac{5}{3}+\frac{4}{3}\right)=\log _e k$
$\Rightarrow \quad \log _e\left(\frac{\sqrt{3}+2}{3}\right)=\log _e k \Rightarrow 3 k-2=\sqrt{3}$
$\Rightarrow 9 k^2-12 k+4=3 \Rightarrow 9 k^2-12 k+1=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.