Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right)-\cos ^{-1}\left(\frac{1-b^{2}}{1+b^{2}}\right)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$,

then what is the value of $x$ ?
MathematicsInverse Trigonometric FunctionsBITSATBITSAT 2016
Options:
  • A $a / b$
  • B $a b$
  • C $b / a$
  • D $\frac{a-b}{1+a b}$
Solution:
1941 Upvotes Verified Answer
The correct answer is: $\frac{a-b}{1+a b}$
Given,

$\sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right)-\cos ^{-1}\left(\frac{1-b^{2}}{1+b^{2}}\right)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$

$\therefore \quad 2 \tan ^{-1} a-2 \tan ^{-1} b=2 \tan ^{-1} x$

$\Rightarrow \tan ^{-1} a-\tan ^{-1} b=\tan ^{-1} x$

$\Rightarrow \quad \tan ^{-1}\left(\frac{a-b}{1+a b}\right)=\tan ^{-1} x$

$\Rightarrow \quad x=\frac{a-b}{1+a b}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.