Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\sin ^{-1}\left(\frac{2 \mathrm{a}}{1+\mathrm{a}^{2}}\right)+\sin ^{-1}\left(\frac{2 \mathrm{~b}}{1+\mathrm{b}^{2}}\right)=2 \tan ^{-1} \mathrm{x}$, then $\mathrm{x}$ is equal to
MathematicsInverse Trigonometric FunctionsNDANDA 2013 (Phase 1)
Options:
  • A $\frac{a-b}{1+a b}$
  • B $\frac{a-b}{1-a b}$
  • C $\frac{2 a b}{1+a b}$
  • D $\frac{a+b}{1-a b}$
Solution:
2127 Upvotes Verified Answer
The correct answer is: $\frac{a+b}{1-a b}$
Since a $>0, b>0$ and $2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$\therefore$ Given expression is $2 \tan ^{-1} \mathrm{a}+2 \tan ^{-1} \mathrm{~b}=2 \tan ^{-1} \mathrm{x}$
$\Rightarrow 2 \tan ^{-1}\left(\frac{a+b}{1-a b}\right)=2 \tan ^{-1} x$
$\Rightarrow x=\frac{a+b}{1-a b}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.