Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\quad \int \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) d x=f(x)-\log \left(1+x^2\right)$ then $f(x)$ is equal to
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2005
Options:
  • A $2 x \tan ^{-1} x$
  • B $-2 x \tan ^{-1} x$
  • C $x \tan ^{-1} x$
  • D $-x \tan ^{-1} x$
Solution:
2065 Upvotes Verified Answer
The correct answer is: $2 x \tan ^{-1} x$
Let $I=\int \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) d x$
Put $x=\tan \theta \Rightarrow d x=\sec ^2 \theta d \theta$
$\begin{aligned}
\therefore \quad I & =\int \sin ^{-1}(\sin 2 \theta) \cdot \sec ^2 \theta d \theta \\
& =2 \int \theta \sec ^2 \theta d \theta \\
& =2\left[\theta \tan \theta-\int \tan \theta d \theta\right] \\
& =2[\theta \tan \theta+\log \cos \theta]+c \\
& =2\left[x \tan ^{-1} x+\log \frac{1}{\sqrt{1+x^2}}\right]+c \\
& =2 x \tan ^{-1} x-\log \left(1+x^2\right)+c
\end{aligned}$
But $I=f(x)-\log \left(1+x^2\right)+c$
$\begin{array}{cc}
\Rightarrow & f(x)-\log \left(1+x^2\right)+c \\
& =2 x \tan ^{-1} x-\log \left(1+x^2\right)+c \\
& f(x)=2 x \tan ^{-1} x
\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.