Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\text { If } \sin ^{-1} \frac{1}{3}+\sin ^{-1} \frac{2}{3}=\sin ^{-1} x \text {, }$ then $x$ is equal to
MathematicsInverse Trigonometric FunctionsJEE Main
Options:
  • A $0$
  • B $\frac{\sqrt{5}-4 \sqrt{2}}{9}$
  • C $\frac{\sqrt{5}+4 \sqrt{2}}{9}$
  • D $\frac{\pi}{2}$
Solution:
2096 Upvotes Verified Answer
The correct answer is: $\frac{\sqrt{5}+4 \sqrt{2}}{9}$
$\begin{aligned} & \sin ^{-1} \frac{1}{3}+\sin ^{-1} \frac{2}{3} \\ & =\sin ^{-1}\left[\frac{1}{3} \sqrt{1-\frac{4}{9}}+\frac{2}{3} \sqrt{1-\frac{1}{9}}\right]=\sin ^{-1}\left[\frac{\sqrt{5}+4 \sqrt{2}}{9}\right] \text {, as }\left\{\sin ^{-1}(x)+\sin ^{-1}(y)=\sin ^{-1}\left\{x \sqrt{1-y^2}+y \sqrt{1-x^2}\right\}\right\} \\ & \text {Therefore } \quad x=\frac{\sqrt{5}+4 \sqrt{2}}{9}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.