Search any question & find its solution
Question:
Answered & Verified by Expert
If $\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}$, then $\cos ^2 48^{\circ}-\sin ^2 12^{\circ}$ has the value
Options:
Solution:
2599 Upvotes
Verified Answer
The correct answer is:
$\frac{\sqrt{5}+1}{8}$
$\begin{array}{ll} & \cos ^2 \mathrm{~A}-\sin ^2 \mathrm{~B}=\cos (\mathrm{A}+\mathrm{B}) \cdot \cos (\mathrm{A}-\mathrm{B}) \\ \therefore \quad & \cos ^2 48^{\circ}-\sin ^2 12^{\circ}=\cos \left(60^{\circ}\right) \cdot \cos \left(36^{\circ}\right) \\ & =\frac{1}{2} \cdot\left(1-2 \sin ^2 \frac{36}{2}\right) \\ & =\frac{1}{2}\left(1-2 \sin ^2 18^{\circ}\right) \\ & =\frac{1}{2}\left[1-2\left(\frac{\sqrt{5}-1}{4}\right)^2\right] \\ & =\frac{\sqrt{5}+1}{8}\end{array}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.