Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}$, then what is the value of $\sin 81^{\circ}$ ?
MathematicsTrigonometric Ratios & IdentitiesNDANDA 2016 (Phase 2)
Options:
  • A $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$
  • B $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$
  • C $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$
  • D $\frac{\sqrt{3+\sqrt{5}}-\sqrt{5-\sqrt{5}}}{4}$
Solution:
1208 Upvotes Verified Answer
The correct answer is: $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$


$$
\begin{aligned}
\because & \sin 18^{\circ}=\frac{\sqrt{5}-1}{4} \\
& x^{2}=4^{2}-(\sqrt{5}-1)^{2} \\
\Rightarrow & x=\sqrt{10+2 \sqrt{5}} \\
\Rightarrow & \cos 18^{\circ}=\frac{\sqrt{10+2 \sqrt{5}}}{4} \\
\Rightarrow & 2 \cos ^{2} 9-1=\frac{\sqrt{10+2 \sqrt{5}}}{4} \\
& \cos ^{2} 9=\frac{\sqrt{10+2 \sqrt{5}}+4}{8} \\
\Rightarrow & \sin ^{2} 81=\frac{4+\sqrt{10+2 \sqrt{5}}}{8}
\end{aligned}
$$
After squaring all the options available, we come to a conclusion that option (a) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.