Search any question & find its solution
Question:
Answered & Verified by Expert
If $\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}$, then what is the value of $\sin 81^{\circ}$ ?
Options:
Solution:
1208 Upvotes
Verified Answer
The correct answer is:
$\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$

$$
\begin{aligned}
\because & \sin 18^{\circ}=\frac{\sqrt{5}-1}{4} \\
& x^{2}=4^{2}-(\sqrt{5}-1)^{2} \\
\Rightarrow & x=\sqrt{10+2 \sqrt{5}} \\
\Rightarrow & \cos 18^{\circ}=\frac{\sqrt{10+2 \sqrt{5}}}{4} \\
\Rightarrow & 2 \cos ^{2} 9-1=\frac{\sqrt{10+2 \sqrt{5}}}{4} \\
& \cos ^{2} 9=\frac{\sqrt{10+2 \sqrt{5}}+4}{8} \\
\Rightarrow & \sin ^{2} 81=\frac{4+\sqrt{10+2 \sqrt{5}}}{8}
\end{aligned}
$$
After squaring all the options available, we come to a conclusion that option (a) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.