Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\int \sin ^{-1}\left(\sqrt{\frac{x}{a+x}}\right) d x=A(x)+$ constant, then $A(x)=$
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2018 (07 May Shift 1)
Options:
  • A $\operatorname{atan}^1 \sqrt{\frac{x}{a}}+a x$
  • B $\frac{1}{\sqrt{a+x}} \tan ^1 \sqrt{\frac{x}{a}}-\sqrt{a x}$
  • C $(a+x) \tan ^1 \sqrt{x}+a \sqrt{x}$
  • D $(a+x) \tan ^1 \sqrt{\frac{x}{a}}-\sqrt{a x}$
Solution:
1990 Upvotes Verified Answer
The correct answer is: $(a+x) \tan ^1 \sqrt{\frac{x}{a}}-\sqrt{a x}$
Let $I=\int \sin ^2 \sqrt{\frac{x}{a+x}} d x$
Put $x=a \tan ^2 \theta \Rightarrow d x=2 a \tan \theta \sec ^2 \theta d \theta$
$$
\begin{aligned}
& \therefore \quad I=\int \sin \sqrt{\frac{a \tan ^2 \theta}{a+a \tan ^2 \theta}} 2 a \tan \theta \sec ^2 \theta d \theta \\
& =\int \sin ^2 \sqrt{\sin ^2 \theta} \cdot 2 a \tan \theta \sec ^2 \theta d \theta \\
& =2 a \int \theta \tan \theta \sec ^2 \theta d \theta \\
& =2 a\left[\theta \frac{\tan ^2 \theta}{2}-\int \frac{\tan ^2 \theta}{2} \cdot 1 d \theta\right] \\
& =a \theta \tan ^2 \theta-a \int \tan ^2 \theta d \theta \\
& =a \theta \tan ^2 \theta-a(\tan \theta-\theta)+c \\
& =x \tan ^2 \sqrt{\frac{x}{a}}-a \sqrt{\frac{x}{a}}+a \tan ^2 \sqrt{\frac{x}{a}}+c \\
& =(x+a) \tan ^2 \sqrt{\frac{x}{a}}-\sqrt{x a}+\text { constant } \\
& \therefore A(x)=(x+a) \tan ^2 \sqrt{\frac{x}{a}}-\sqrt{x a} \\
&
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.