Search any question & find its solution
 Question:  
Answered & Verified by Expert
 
 If $\sin ^{-1}\left(\frac{3}{x}\right)+\sin ^{-1}\left(\frac{4}{x}\right)=\frac{\pi}{2}$, then $x$ is equal to
  Options:
            Solution: 
    1281 Upvotes
  
Verified Answer
 
 
The correct answer is:
$5$ 
 Given that,
$\begin{aligned}
& \sin ^{-1}\left(\frac{3}{x}\right)+\sin ^{-1}\left(\frac{4}{x}\right)=\frac{\pi}{2} \\
& \therefore \sin ^{-1}\left(\frac{3}{x}\right)=\frac{\pi}{2}-\sin ^{-1}\left(\frac{4}{x}\right) \\
& \Rightarrow \sin ^{-1}\left(\frac{3}{x}\right)=\cos ^{-1}\left(\frac{4}{x}\right) \\
& \Rightarrow \sin ^{-1}\left(\frac{3}{x}\right)=\sin ^{-1}\left(\frac{\sqrt{x^2-16}}{x}\right) \\
& \Rightarrow \frac{3}{x}=\frac{\sqrt{x^2-16}}{x} \\
& \Rightarrow 9=x^2-16 \Rightarrow x^2=25 \\
& \Rightarrow x= \pm 5 \\
& \Rightarrow x=5
\end{aligned}$
($\because-5$ is not satisfied the given equation)
 $\begin{aligned}
& \sin ^{-1}\left(\frac{3}{x}\right)+\sin ^{-1}\left(\frac{4}{x}\right)=\frac{\pi}{2} \\
& \therefore \sin ^{-1}\left(\frac{3}{x}\right)=\frac{\pi}{2}-\sin ^{-1}\left(\frac{4}{x}\right) \\
& \Rightarrow \sin ^{-1}\left(\frac{3}{x}\right)=\cos ^{-1}\left(\frac{4}{x}\right) \\
& \Rightarrow \sin ^{-1}\left(\frac{3}{x}\right)=\sin ^{-1}\left(\frac{\sqrt{x^2-16}}{x}\right) \\
& \Rightarrow \frac{3}{x}=\frac{\sqrt{x^2-16}}{x} \\
& \Rightarrow 9=x^2-16 \Rightarrow x^2=25 \\
& \Rightarrow x= \pm 5 \\
& \Rightarrow x=5
\end{aligned}$
($\because-5$ is not satisfied the given equation)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.