Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\sin ^{-1} x+\sin ^{-1} \mathrm{y}+\sin ^{-1} \mathrm{z}=\frac{3 \pi}{2}, \quad$ then $x^{100}+\mathrm{y}^{100}+\mathrm{z}^{100}=$
MathematicsInverse Trigonometric FunctionsMHT CETMHT CET 2020 (20 Oct Shift 1)
Options:
  • A $3$
  • B $4$
  • C $2$
  • D $1$
Solution:
1394 Upvotes Verified Answer
The correct answer is: $3$
Given
$$
\begin{array}{l}
\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2} \Rightarrow \sin ^{-1} x=\sin ^{-1} y=\sin ^{-1} z=\frac{\pi}{2} \\
\therefore x=y=z=1 \\
\therefore x^{100}+y^{100}+z^{100}=1+1+1=3
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.