Search any question & find its solution
Question:
Answered & Verified by Expert
If $\sin ^{-1} x+\sin ^{-1} \mathrm{y}+\sin ^{-1} \mathrm{z}=\frac{3 \pi}{2}, \quad$ then $x^{100}+\mathrm{y}^{100}+\mathrm{z}^{100}=$
Options:
Solution:
1394 Upvotes
Verified Answer
The correct answer is:
$3$
Given
$$
\begin{array}{l}
\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2} \Rightarrow \sin ^{-1} x=\sin ^{-1} y=\sin ^{-1} z=\frac{\pi}{2} \\
\therefore x=y=z=1 \\
\therefore x^{100}+y^{100}+z^{100}=1+1+1=3
\end{array}
$$
$$
\begin{array}{l}
\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2} \Rightarrow \sin ^{-1} x=\sin ^{-1} y=\sin ^{-1} z=\frac{\pi}{2} \\
\therefore x=y=z=1 \\
\therefore x^{100}+y^{100}+z^{100}=1+1+1=3
\end{array}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.