Search any question & find its solution
Question:
Answered & Verified by Expert
If \( \sin ^{-1} x+\sin ^{-1} y=\frac{\Pi}{2} \), then \( x^{2} \) is equal to
Options:
Solution:
2326 Upvotes
Verified Answer
The correct answer is:
\( 1-y^{2} \)
Given that,
\( \sin ^{-1} x+\sin ^{-1} y=\frac{\Pi}{2} \rightarrow(1) \)
We know that,
\( \sin ^{-1} x+\cos ^{-1} x=\frac{\Pi}{2} \rightarrow(2) \)
From Eqs. (1) and (2), we get
\( \sin ^{-1} y=\cos ^{-1} x \) \( x=\cos \left(\sin ^{-1} y\right) \)
We know that, \( \sin ^{-1} x=\cos ^{-1} \sqrt{1-x^{2}} \)
So, \( \cos \left(\cos ^{-1} \sqrt{1-y^{2}}\right)=\sqrt{1-y^{2}} \)
\( \Rightarrow x^{2}=\left(1-y^{2}\right) \)
\( \sin ^{-1} x+\sin ^{-1} y=\frac{\Pi}{2} \rightarrow(1) \)
We know that,
\( \sin ^{-1} x+\cos ^{-1} x=\frac{\Pi}{2} \rightarrow(2) \)
From Eqs. (1) and (2), we get
\( \sin ^{-1} y=\cos ^{-1} x \) \( x=\cos \left(\sin ^{-1} y\right) \)
We know that, \( \sin ^{-1} x=\cos ^{-1} \sqrt{1-x^{2}} \)
So, \( \cos \left(\cos ^{-1} \sqrt{1-y^{2}}\right)=\sqrt{1-y^{2}} \)
\( \Rightarrow x^{2}=\left(1-y^{2}\right) \)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.